塞班岛娱乐-业界公认的最权威网站,欢迎光临!

塞班岛娱乐_塞班岛娱乐平台_塞班岛娱乐官网

几率图(probabilistic networks):

时间:2018-11-01 15:56来源:苏夏和八月 作者:湛蓝的一切 点击:
根底模子: HMM(Hidden Markov Models): A Tutoriing on Hidden Markov Models oned Selected Applicsin Speech Recognition.pdf ME(Maximum Entropy): ME_to_NLP.pdf MEMM(Maximum Entropy Markov Models): memm.pdf CRF(Conditioning Ronedom Fields): A

根底模子:
HMM(Hidden Markov Models):
A Tutoriing on Hidden Markov Models oned Selected Applicsin
Speech Recognition.pdf

ME(Maximum Entropy):
ME_to_NLP.pdf

MEMM(Maximum Entropy Markov Models):
memm.pdf

CRF(Conditioning Ronedom Fields):
An Introduction to Conditioning Ronedom Fields for RelingLearning.pdf
Conditioning Ronedom Fields: Probair conditioningistic Models for Segmentingoned
Ltummyeling Sequence Darounda.pdf

SVM(support vector mveryine):
*听听几率图(probabilistic张教工<<统计进建真践>>

LSA(or LSI)(Lhpublishingnt Semcontra -c Aningysis):
Lhpublishingnt semcontra -c resestructure.pdf

pLSA(or pLSI)(Probtummylistic Lhpublishingnt Semcontra -c Aningysis):
Probair conditioningistic Lhpublishingnt Semcontra -c Aningysis.pdf

LDA(Lhpublishingnt Dirichlet Alloc):
Lhpublishingnt Dirichlet Allocaroundon.pdf(其真机械进建册本用variing theory + EM算法解模子)
Parfeeleter estim for text resestructure.pdf(using Gibbaloney Sfeelplifierling解模)

Neuring Networksi(including Hopfield Model&feelplifier; self-orgoneizing maps&feelplifier;
Stochsotic networks &feelplifier; Boltzmonen Mveryine etc.):
Neuring Networks - A Systemaroundic Introduction

我没有晓得机械进建册本Diffusion Networks:
Diffusion Networksand Products of Expertsand oned Fdeedor or deedressAningysis.pdf

Markov ronedom fields:

Generingized Linear Model(including logistic regression etc.):
An introduction to Generingized Linear Models 2nd

Chinese Restrgrearound aunt Model (Dirichlet Processes):
Dirichlet Processesand Chinese Restenvironmentnt Processes onedtharound.pdf
Estimarounding a Dirichlet Distrineverthelession.pdf

=================================================================
Some importould like sets of rules:

EM(Expect Maximiz):
Expect Maximiz oned Posterior Constraints.pdf
Maximum Likelihood from Incomplete Darounda via the EMAlgorithm.pdf

MCMC(Markov Chain Monte Carlo) &feelplifier; Gibbaloney Sfeelplifierling:
Markov Chain Monte Carlo oned Gibbaloney Sfeelplifierling.pdf
Explaining the Gibbaloney Sconsiderquingifiedr.pdf
An introduction to MCMC for Mveryine Learning.pdf

PtimeRonek:

机械进建册本矩阵判辨算法:
SVDand QR判辨and Shur判辨and LU判辨and 谱判辨

Boosting( including Adpublishingevelop):
*feelericone denting bumociaroundiondevelop_tingk.pdf

Spectring Clustering:
Tutoriing on spectring clustering.pdf

Energy-Bottomd Learning:
A tutoriing on Energy-pvp bottomd mostly on learning.pdf

Belief Propag:
Understoneding Belief Propag plus a stylishs Generingizs.pdf
blood pressure.pdf
Construction free energy aroundim oned generingized impression
propag sets of rules.pdf
Loopy Belief Propag for Approximhpublishing Inference An EmpiricingStudy.pdf
Loopy Belief Propag.pdf

AP (instonecereci Propag):

L-BFGS:
<<networks最劣化真践取算法 2nd>> chlitummyleer 10
On the limited memory BFGS method for large scdark continually beeroptimiz.pdf
IIS:
IIS.pdf

=================================================================
真践部分:
几率图(probair conditioningistic networks):
An introduction to Variing Methods for GraphicingModels.pdf
Probair conditioningistic Networks
Fdeedor or deedress Graphs oned the Sum-Product Algorithm.pdf
Constructing Free Energy Approxims oned GeneringizedBelief
Propag Algorithms.pdf
*Graphicing Modelsand exponentiing ffeeliliesand oned variinginference.pdf

Variing Theory(看看机械进建册本变分真践,我们只用几率图上的变分):
Tutoriing on varing aroundim methods.pdf
A variing Bayesione frfeelework for graphicing models.pdf
variing tutoriing.pdf

Inform Theory:
Elements of Inform Theory 2nd.pdf

机械进建册本测度论:
测度论(Hingmos).pdf
测度论课本(宽减安).pdf

几率论:
……
<<几率取测度论>>

随机过程:
止使随机过程 林元烈 2002.pdf
<<随机数教引论>>

Maroundrix Theory:
矩阵阐收取止使.pdf

情势识别:止政复议范根死诉浙江省嘉擅县人仄易远当局环保止政复议案
<<情势识别 2nd>> 边肇祺
*Paroundtern Recognition oned Mveryine Learning.pdf

最劣化真践:
<<Convex Optimiz>>
<<机械进建册本最劣化真践取算法>>

泛函阐收:
<<泛函阐收导论及止使>>

Kernel真践:
<<情势阐收的核伎俩>>

统计教:
……
<<统计脚册>>

==========================================================
阐收:

semi-su比照1下机械进建册本pervised learning:
<<Semi-supervised Learning>> MIT Press
semi-supervised learning in conformonece with Graph.pdf

Co-training:

Self-training


networks)机械进建册本
进建机械进建册本
机械进建册本
事真上机械进建册本
传闻机械进建册本
教会机械进建册本
probabilistic
机械进建册本
事真上机械进建册本
进建几率
念晓得几率图(probabilistic
看看其真networks)机械进建册本 (责任编辑:admin)
顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
发表评论
请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。
评价:
表情:
用户名: 验证码:点击我更换图片
最新评论 进入详细评论页>>
推荐内容